20
EXE RANK
SpoinieN-
Fexe Kullanıcısı
Puanları
0
Çözümler
0
- Katılım
- 27 May 2010
- Mesajlar
- 29,079
- Tepkime puanı
- 0
- Puanları
- 0
- Yaş
- 27
- Web sitesi
- www.cankskn.com
Çekirdek Bozunmaları:
Çekirdekler bir kere oluştuklarında, hep öyle aynı kalmıyor, onlar da bozunabiliyor ve bu sırada çeşitli parçacıklar ışınlıyor. Bu ışınlara; hangi parçacıklardan oluştukları ilk keşfedildiklerinde bilinmediğinden; isim olarak Grekçe alfabenin harfleri, ilkinden başlayarak sırasıyla verilmiş. Örneğin bazı çekirdekler, iki nötron ve iki protondan oluşan helyum çekirdeği gibi kocaman parçacıklar ışınlıyorlar. Böyle çekirdeklere sahip atomlardan oluşan bir cismin yaydığı ışınlara 'α ışınları' deniyor. Bazı çekirdeklerse elektron salıyor ve bu tür çekirdeklere sahip cisimlerin yaydığı ışınlara 'β ışınları' denmiş. Bir de çok yüksek enerjili foton salanlar var. Bunlardan yayılan ışınlara da 'γ ışınları' deniyor.
Radyoaktivite denilen bu olay, geçen yüzyılın başında, o zamanki klasik fiziğin karşı karşıya bulunduğu en ciddi sorunlardan birini oluşturuyordu. Çünkü Newton'un klasik mekanik yasalarına göre; eğer bir sistem kararlıysa, hep ayakta kalmalı; yok eğer kararsızsa, örneğin bir bina ayakta duramayacak durumdaysa, hemen çökmeliydi. Hem de; bu durumda olan binaların hepsi, hemen hemen aynı anda... Halbuki radyoaktif çekirdekler hiç de böyle davranmıyordu. Kararsız oldukları belliydi, o yüzden parçacık ışıyıp bozunuyorlardı. Fakat radyoaktif bir kütlenin çekirdekleri bunu hep birlikte ve aynı anda yapmak yerine; sıcak bir tavadaki mısırların aralıklarla patlamasında olduğu gibi, zamana yaygın bir şekilde yapıyorlardı. Gerçi zamanla, kararsız çekirdeklerin sayısı giderek azaldığından, söz konusu ışıma zayıflıyor, fakat devam edip gidiyordu. Klasik mekanikle açıklanması imkansız görünen bu durum, kuantum mekaniğinin doğuşunu zorlayan ana etkenlerden birini oluşturdu.
Çekirdeği oluşturan protonlarla nötronların, birbirleri açısından, yaklaşık merkezi bir çekim alanı oluşturdukları ve atomdaki elektronlarınkilere benzer şekilde, farklı enerji düzeylerine karşılık gelen yörünge kabuklarında oturdukları düşünülebilir. Çekirdeğin 'kabuk modeli' denilen bu tasarımda, nötronlarla protonlar, farklı türden parçacıklar oldukları için, bağımsız yörünge şemalarına sahiptirler. Öte yandan her ikisi de, ћ/2 spinleriyle fermion olduklarından, ayrı ayrı kendi yörüngelerini, tıpkı elektronlar gibi; spinleri zıt yönlerde olacak şekilde, çiftler halinde paylaşmak durumundadırlar. Dolayısıyla çekirdek, nötronlarının ve protonlarının hangi yörünge yapısında oturuyor olduğuna bağlı olarak; en düşük enerjili temel durumunda veya uyarılmış enerji durumlarından birinde bulunuyor olabilir. Uyarılmış haldeki çekirdekler, zamanla foton yayarak, daha düşük enerjili durumlara geçiş yaparlar. Işınlanan fotonun enerjisi, arasında geçiş yapılan iki düzeyin enerjileri arasındaki farka eşittir. Çekirdekteki enerji düzeylerinin, hem kendi değerleri ve hem de aralarındaki farklar; atomdaki elektronların enerji düzeylerine oranla çok daha büyüktür. Bu yüzden, çekirdek ışımalarından kaynaklanan fotonların enerjisi veya frekansı, atom ışımalarında görülen fotonlarınkinden çok daha yüksektir. Hem de yüksüz olduklarından, gama ışınları malzemelerde uzun mesafeler katedebilirler ve durdurulmaları, diğerlerine göre çok daha zordur. Bu amaçla, kurşun gibi ağır bir metalden levhalar kullanılır. Nihayet bazı çekirdekler, oluştukları anda uyarılmış durumdadır veya uyarılmış halde oluşmuşlardır. Zamana bağlı olarak, gama ışınları yayarlar. Bazı radyoaktif çekirdeklerin gösterdiği gama etkinliği bundan ibarettir ve kaynağını, nükleonların yörünge yapısını belirleyen güçlü etkileşimden alır. Alfa ışıması biraz daha karışık...
Çekirdekler bir kere oluştuklarında, hep öyle aynı kalmıyor, onlar da bozunabiliyor ve bu sırada çeşitli parçacıklar ışınlıyor. Bu ışınlara; hangi parçacıklardan oluştukları ilk keşfedildiklerinde bilinmediğinden; isim olarak Grekçe alfabenin harfleri, ilkinden başlayarak sırasıyla verilmiş. Örneğin bazı çekirdekler, iki nötron ve iki protondan oluşan helyum çekirdeği gibi kocaman parçacıklar ışınlıyorlar. Böyle çekirdeklere sahip atomlardan oluşan bir cismin yaydığı ışınlara 'α ışınları' deniyor. Bazı çekirdeklerse elektron salıyor ve bu tür çekirdeklere sahip cisimlerin yaydığı ışınlara 'β ışınları' denmiş. Bir de çok yüksek enerjili foton salanlar var. Bunlardan yayılan ışınlara da 'γ ışınları' deniyor.
Radyoaktivite denilen bu olay, geçen yüzyılın başında, o zamanki klasik fiziğin karşı karşıya bulunduğu en ciddi sorunlardan birini oluşturuyordu. Çünkü Newton'un klasik mekanik yasalarına göre; eğer bir sistem kararlıysa, hep ayakta kalmalı; yok eğer kararsızsa, örneğin bir bina ayakta duramayacak durumdaysa, hemen çökmeliydi. Hem de; bu durumda olan binaların hepsi, hemen hemen aynı anda... Halbuki radyoaktif çekirdekler hiç de böyle davranmıyordu. Kararsız oldukları belliydi, o yüzden parçacık ışıyıp bozunuyorlardı. Fakat radyoaktif bir kütlenin çekirdekleri bunu hep birlikte ve aynı anda yapmak yerine; sıcak bir tavadaki mısırların aralıklarla patlamasında olduğu gibi, zamana yaygın bir şekilde yapıyorlardı. Gerçi zamanla, kararsız çekirdeklerin sayısı giderek azaldığından, söz konusu ışıma zayıflıyor, fakat devam edip gidiyordu. Klasik mekanikle açıklanması imkansız görünen bu durum, kuantum mekaniğinin doğuşunu zorlayan ana etkenlerden birini oluşturdu.
Çekirdeği oluşturan protonlarla nötronların, birbirleri açısından, yaklaşık merkezi bir çekim alanı oluşturdukları ve atomdaki elektronlarınkilere benzer şekilde, farklı enerji düzeylerine karşılık gelen yörünge kabuklarında oturdukları düşünülebilir. Çekirdeğin 'kabuk modeli' denilen bu tasarımda, nötronlarla protonlar, farklı türden parçacıklar oldukları için, bağımsız yörünge şemalarına sahiptirler. Öte yandan her ikisi de, ћ/2 spinleriyle fermion olduklarından, ayrı ayrı kendi yörüngelerini, tıpkı elektronlar gibi; spinleri zıt yönlerde olacak şekilde, çiftler halinde paylaşmak durumundadırlar. Dolayısıyla çekirdek, nötronlarının ve protonlarının hangi yörünge yapısında oturuyor olduğuna bağlı olarak; en düşük enerjili temel durumunda veya uyarılmış enerji durumlarından birinde bulunuyor olabilir. Uyarılmış haldeki çekirdekler, zamanla foton yayarak, daha düşük enerjili durumlara geçiş yaparlar. Işınlanan fotonun enerjisi, arasında geçiş yapılan iki düzeyin enerjileri arasındaki farka eşittir. Çekirdekteki enerji düzeylerinin, hem kendi değerleri ve hem de aralarındaki farklar; atomdaki elektronların enerji düzeylerine oranla çok daha büyüktür. Bu yüzden, çekirdek ışımalarından kaynaklanan fotonların enerjisi veya frekansı, atom ışımalarında görülen fotonlarınkinden çok daha yüksektir. Hem de yüksüz olduklarından, gama ışınları malzemelerde uzun mesafeler katedebilirler ve durdurulmaları, diğerlerine göre çok daha zordur. Bu amaçla, kurşun gibi ağır bir metalden levhalar kullanılır. Nihayet bazı çekirdekler, oluştukları anda uyarılmış durumdadır veya uyarılmış halde oluşmuşlardır. Zamana bağlı olarak, gama ışınları yayarlar. Bazı radyoaktif çekirdeklerin gösterdiği gama etkinliği bundan ibarettir ve kaynağını, nükleonların yörünge yapısını belirleyen güçlü etkileşimden alır. Alfa ışıması biraz daha karışık...